
T
he attention standards setters have given to the comput-
erized environment has varied over the years. Currently,
references to information technologies (IT) are sprinkled
around the margins of audit standards. Yet in most com-

plex organizations (defined here as a work environment large
enough to enable a degree of segregation of duties), the
majority of an entity’s internal controls are handled by IT.
According to a GAO estimate, internal controls are approxi-
mately 80% performed in some way by a computerized fea-
ture (Standards for Internal Control in the Federal Government,
November 1999, www.gao.gov/special.pubs/ai00021p.pdf).

Reliance on IT controls has become more formally recognized
under the Public Company Accounting Oversight Board’s
(PCAOB) Auditing Standards 2 and 5. AS5 requires the
following:

[27.] As part of evaluating the period-end financial reporting
process, the auditor should assess—
■ Inputs, procedures performed, and outputs of the processes
the company uses to produce its annual and quarterly finan-
cial statements;
■ The extent of information technology … involvement in
the period-end financial reporting process.

Evaluating Software Risk as Part of a
Financial Audit

T E C H N O L O G Y

t h e c p a & t h e c o m p u t e r

JUNE 2009 / THE CPA JOURNAL68

By Yigal Rechtman

Similarly, Statement on Auditing
Standards 109, Understanding the Entity
and Its Environment and Assessing the
Risks of Material Misstatement, requires
auditors to understand the risks in the inter-
nal controls environment and specifically
assess the effect of IT on these risks.

Generally Accepted Auditing Standards
(GAAS) require that “[t]he auditor should also
understand how information technology
affects relevant control activities” (AU
314.92). Accordingly, “[t]he use of informa-
tion technology affects the way control
activities are implemented.” Other portions of
GAAS elaborate on this requirement, making
sure that auditors are cognizant of the breadth
of IT controls as part of internal controls,
and of the specific nature of these controls
and the special types of risks they present.

Accordingly, auditors should be informed
about the risks and requirements with respect
to IT-related audit risks. The auditing of auto-
mated, pre-programmed, and otherwise tech-
nologically implemented controls should be
considered in the same way that nonauto-
mated controls are, with more attention given
to the risks presented by computerized con-
trols. Auditors should not assume that sub-
stantive testing can replace a detection mech-
anism. This thinking misses a crucial part in
understanding how a computerized infor-
mation system is vulnerable: Electronic
records and programs can change instanta-
neously and without leaving a paper trail. In
addition, computer applications can produce
a large volume of transactions and balances
so large that traditional audit testing would
be a few orders of magnitude below the pop-
ulation size. It is thus imperative that audi-
tors properly and fully understand, assess, and
respond to the transactions, balances, and dis-
closures produced by these systems.

The best approach for an auditor is a
combination of several types of audit
responses: 1) testing of the results of the
IT processing; 2) re-performing select
transactions; and 3) evaluating the quality
of the software used to generate transac-
tions and the amounts that make their
way to the financial statements’ balances
and disclosures. The first two methods
are very much like the old-fashioned pro-
cedures that enabled auditors to audit
around the computer.

The earlier paradigm assumed that com-
puter processing was linear and simple.
This view considered IT an “input-process-

output” activity, meaning that the validity
of the inputs and outputs would ensure
the process is valid too. For reasons dis-
cussed below, this assumption no longer
holds true. Auditors who are interested in
assessing and evaluating the quality of IT
processing should consider software qual-
ity as a primary method of evaluation and
assessing control and detection risks with-
in the audit risk assessment process. This
article aims to describe and analyze the var-
ious methods of assessing IT risks, espe-
cially as related to the evaluation of soft-
ware quality. These methods include
benchmarking, regression analysis, review-
ing program code, and user acceptance.

Benchmarking
The common thread among early com-

puter applications written before the popu-
larization of the personal computer (PC) age
was this: Applications could be described as
linear, albeit complex, functions. A linear
processing paradigm is one where there is
only one single process at any given time.
Such a process is simple because it starts
with an input that is processed and results
in an output; the output is often the input of
the next process. Linear processes have one
and only one active processing unit at any
given time. (By contrast, parallel process-
ing entails multiple processes with varying
degrees of interdependence.) The complex-
ities of a business solution were pared down
to smaller and simpler programs. Early com-
puter programs were constructed such that
the output of one program became an inter-
mediary report as well as the input of the
next program. Data structures were also
relatively simple; relational databases and
data silos were not yet common.

To financial auditors, these intermediate
steps, which were often in the form of rec-
onciling reports, gave rise to the concept
of auditing around the computer. Because
each program processed data and produced
some type of report, the auditors could fol-
low the trail of processing from the initial
input until the final—and financially mate-
rial—output. When it came to substantiat-
ing the assertions that were produced by
these programs, auditors often used bench-
marking to track only the changes that had
occurred since the last audited period.

For example, suppose that a general ledger
application combines monthly journal entries
from various areas, such as accounts receiv-

able, accounts payable, and payroll. A lega-
cy software would be written such that each
of these modules creates an interface file to
the general ledger program (step 1); a utili-
ty program scans the interface file and vali-
dates its input (step 2); the output file of the
utility program becomes an input file for the
general ledger program for general journal
entries (step 3). In this simplified example,
the auditors could simply test the initial, inter-
mediate, and final steps without understand-
ing exactly how the software worked. If there
were a change in software (e.g., by adding a
department code to the chart of accounts’
structure), auditors could benchmark the soft-
ware by assuming that, except for the one
noted change, all functionalities remained the
same and, as such, the only significant test-
ing needed would be to ascertain that the cor-
rect department was recorded in the month-
ly journal processing.

As discussed earlier, auditing around the
computer is no longer viable, primarily
because computer programs are now bun-
dled into software suites and the internal
interchanges between modules is not read-
ily tractable. For the same reasons that
simple computing models are no longer
used, the concept of benchmarking cannot
be effectively applied in many cases.
Benchmarking can effectively assist the
auditors when linear software is used and
when the interdependencies between vari-
ous parts of the software can be very clear-
ly defined. AS5 permits the use of bench-
marking as a way to rely on software.
Nevertheless, financial and technical audi-
tors should be cognizant of the substantial
weaknesses of this audit methodology when
a complex input/output environment exists.
Not only do the program parameters and
logics need to be benchmarked but so do
significant underlying operating system
libraries, auxiliary system functions, and
other programs that operate as part and
parcel of the software application.

Auditors should be aware of the preva-
lence of “libraries” of common functions for
a particular software application. The use of
libraries almost always negates clear dis-
tinctions between parts of the software, even
if they can be otherwise logically separat-
ed. Libraries are a compilation of commonly
used functions that are shared among
many modules of the same application.
For example, a function that looks up an
account in the chart of accounts may be

69JUNE 2009 / THE CPA JOURNAL

JUNE 2009 / THE CPA JOURNAL70

placed in a library, which will allow all mod-
ules of the applications to access it. When
the accounts receivable module needs to
search for an account number in the chart
of accounts, the function in the library is
being used. The same function is used when
a payroll module requires a lookup in the
chart of accounts. Because libraries inter-
connect several modules with their com-
monly used functions, the logical separation
of these modules is obscured by the com-
mon software. When this occurs, the mod-
ules become part of one large application
that cannot be readily evaluated for changes,
making it inappropriate to use benchmark-
ing procedures for assessing risk.

Regression Analysis
Evaluating relationships between observed

instances and related results is well docu-
mented in statistics. The strength of a rela-
tionship between an independent variable and
a dependent variable is often measured by
R-square. R-square—known as the coeffi-
cient of determination—measures how much
a set of data varies, and in particular the vari-
ation of the dependent variable based on
movement of the independent variable. R-
square is measured on a scale from –1 to 1
where a –1 represents a perfect inverse
relationship and 1 represents a perfect
direct relationship; 0 represents no relation-
ship. For example, if the relationship between
gross sales and sales commissions paid is
0.85, it means that 85 cents of every dollar
of sales commissions paid is related to the
magnitude of gross sales.

When it comes to evaluating software,
especially a calculation module that is crit-
ical and material to the financial statement,
the use of regression analysis and R-square
can be a helpful tool. Two conditions often
need to be satisfied in order for a regres-
sion analysis to take place: First, the mod-
ule must relate materially to a financial
statement assertion, and, second, inputs and
outputs must be readily available and cost
effective. To explain the second condi-
tion, note that the effectiveness of regres-
sion analysis relies on a high number of
observations. A software module that is
being tested needs to be “fed” many
instances of data and the output needs to
be evaluated for all of them. Accordingly,
if manual entry is required, the audit pro-
cedure is going to be costly. The purpose
of the regression testing is to identify

anomalies. This is an effective way to iden-
tify outputs that do not conform to the
specification, especially in a complex
software application. When a change is
made to the logic of the software, a regres-
sion analysis process will re-create real-life
scenarios and values and evaluate the sys-
tem’s response. The real-life scenarios must
be somewhat random and somewhat con-
sistent, because the goal is to test the
revised software for its response, seeking
outlying circumstances.

Example. A telephone concern has
many billing plans and a software module
calculates commissions for the sales force
based on any number of variables on a per-
contract basis. The software can be modi-
fied in such a way that instead of manual-
ly entering each contract, it can electroni-
cally receive a large quantity of contract
information and output the results in an

electronically efficient format. The pro-
cessing is nonlinear: Multiple values and
processes funnel into a single result, and
the interdependencies make it a complex
software application. Several passes of
the same data may be required, rendering
the software application nonlinear. A
regression analysis is then applied to the
electronic input and output. The purpose
of the regression analysis is to locate pos-
sible anomalies in relationships between
variables. Suppose that sales commissions
are higher for cellular phone contracts with
two phones or more. A regression analy-
sis should result in an R-square that
approaches 1 for the relationship between
the type of contract and number of
phones used (independent variables) and
the commission paid on these contracts.

In a sense, this is a highly complex ana-
lytical procedure that does not evaluate the
plausibility of the data, but instead the oper-
ation of the calculation module. An outli-
er for this type of a regression analysis
would occur where the output does not
agree with the specifics designed by the
business unit.

The caveat of using a regression analy-
sis as a tool for evaluating software risks
is that access to the source code is gener-
ally required, as well as a level of cooper-
ation that would allow high-quantity sam-
ples of input and output in order to facili-
tate the procedure. The procedure is best
suited for in-house programs and applica-
tions, where there is at least one critical
module and reliable programming person-
nel who can facilitate the audit assess-
ment procedure.

Code Review
Code reviews are a very effective

method for establishing the risk of incor-
rect operation by software that has an effect
on a material assertion in the financial state-
ments. Similar to regression analyses, code
reviews can be done at several levels and
under certain conditions. The key require-
ment is that the software code is available
and technical experts are on hand to eval-
uate it. Code reviews are sometimes akin
to benchmarking because some varieties
evaluate not only the changes made but
also the process under which such changes
were made. To that effect, auditors should
be familiar with best practices in the way
that software programs and applications are
modified. In brief, some of these best prac-
tices include documentation of how
changes are made, tests performed in
noncritical environments, and user accep-
tance of the final product.

To assess the risk related to software,
a code review generally includes at least
an evaluation of the change manage-
ment process. More often, a code
review involves some degree of scrutiny
of the actual programming language used
to develop an application. To accomplish
a code review, a human or machine scans
the application source programming code
to evaluate its susceptibility to known
programming errors. One such error can
include hardwired values instead of
variable, configurable values. For exam-
ple, a payroll program should not write

To assess the risk related to

software, a code review generally

includes at least an evaluation of

the change management process.

JUNE 2009 / THE CPA JOURNAL 71

the FICA percentage into the source code; if the FICA per-
centage needs to be changed, finding all the instances where
that hardwired value of 7.65% is used will be costly and may
render the software unreliable.

If the regular development of the software is undertaken in
accordance with software development best practices, auditors can
more readily rely on the software’s documentation. These often
include budgets, initiation forms, technical specifications, and
the results of user testing that, in the aggregate, will indicate that
good programming practices were undertaken in developing the
software. Reviewing the source code with a human eye should
be done by an expert programmer. There are also automated solu-
tions that can be configured to search source code for certain types
of breaches in programming.

User Acceptance
As part of practices for developing software code, auditors

should be aware that initial, internal, and final approval by end
users is crucial to the quality of the software. Users are often the
subject-matter experts who can most prudently specify and eval-
uate the uses that the software should have. Even software that
is not programmable per se might have changes that are driven
by specific values. For example, software may have a fixed
logic but contain lookup tables; a mistaken value in the lookup
table can cause the software to operate incorrectly, even if the
programming logic is correct. One example familiar to most CPAs
is payroll software that requires annual updates to the withhold-
ing tables and FICA limits.

In situations where the software program code changes, end
users’ specifications, involvement, and approval are essential
to the quality of the resulting software product. When the devel-
opment process is adequately documented, it provides audi-
tors with a cradle-to-grave audit trail. In most environments,
even those that only use configurable software (such as the pay-
roll application example above), user acceptance procedures
have a direct effect on the auditor’s assessment and the audi-
tor’s reliance on the results of the balances and disclosures
that the software produces.

Example. A medical billing practice uses industry-specific
software to help process claims; the practice also uses the
software to generate accounting entries for its own internal use.
Assume that there is a change in the formula by which the med-
ical billing practice charges the doctors who are its customers.
The software vendor receives an initial request for the change
and follows up with a documented flowchart, along with exam-
ples of what the new formula would be; the practice reviews
the complete kit and formally approves it. The software devel-
oper then provides a preliminary program that runs in a test
environment. The users are given sufficient time and
resources to evaluate the new program in the test environment
before formally accepting and approving the change. The soft-
ware vendor reviews all the test results to prove that the pro-
gram is operated as intended under the new formula. The soft-
ware vendor then selects an appropriate date and, in coordina-
tion with the users, migrates the new application from the
testing environment to the real production environment. Once
the new software is installed, users conduct further testing before

approving the software in a final formal communication. This
type of change management allows all parties involved—from
the software developer to the users to regulatory and account-
ing stakeholders—to be satisfied that all necessary quality
control steps have been taken to ensure a successful revision
that will serve the user’s needs.

Mitigating Risks
Computer applications and information technologies present

certain audit risks to even the best-prepared auditor. Many audi-
tors consider IT specialists to be unnecessary because substan-
tive auditing is considered sufficient to compensate for a lack of
controls in the computerized environment. This author believes
such auditors may be in error. IT systems have become too large
and complex—and businesses rely upon them so pervasively—
that auditors cannot ignore the audit risks that they represent.
Understanding, assessing, and responding to audit risks as they
arise from the IT environment is not just a practical matter, it is
a necessary part of adhering to auditing standards. ❑

Yigal Rechtman, CPA, CFE, CISM, CITP, is a director for infor-
mation technology, technology assurance, and forensic services
at Buchbinder Tunick & Co., LLP, New York, N.Y.

Join us this summer to earn your CPE!
Last Chance to Sign Up!

Check out what FAE has in store for you in JUNE!

Personal Financial Planning
Conference
Tuesday, June 9, 2009
Bernstein Global Wealth
Management
1345 Avenue of the Americas
New York, NY 10105
Course Code: 25275011

Anti-Fraud/Anti-Money
Laundering Conference
Wednesday, June 10, 2009
New York Marriott Marquis at
Times Square
New York, NY 10036
Course Code: 25175011

CFOs, Controllers, and
Financial Executives
Conference
Thursday, June 11, 2009
New York Helmsley Hotel
New York , NY 10017
Course Code: 25269011

Accounting and Auditing in
the Non-Public (Non-Issuer)
Environment Conference
Tuesday, June 16, 2009
New York Marriott Marquis at
Times Square
New York , NY 10036
Course Code: 25137011

IRS Practice and Procedures
Conference
Thursday, June 25, 2009
New York Marriott Marquis at
Times Square
New York , NY 10036
Course Code: 25609011

2
0

0
9

 J
u

n
e

 C
o

n
fe

r
e

n
c

e
s

FAE
f o u n d a t i o n f o r a c c o u n t i n g

e d u c a t i o n

Register today with your POP Pass. Visit www.nysscpa.org/faeorg/popintro.htm.

For more information, please visit www.nysscpa.org, or call 800-537-3635.

